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Background

Learning a novel motor skill, such as 

playing a musical instrument, requires the 

precise coordination of the motor control 

areas of the brain with the pathways 

involved in decision making & learning.

Previous neuroscientific studies2 have 

implicated the prefrontal cortex, the brain’s 

cognitive decision-making area3, indicating
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Fig 1: The areas of the brain involved 

in reward based learning.

Details of the Task

79 adults took part in an online motor decision task, adapted from the two-armed bandit. The 

adults consisted of 37 young participants (aged between 18 and 39), 31 older participants 

(aged 60 and over) and 11 patients from the Neurological Clinic of University Hospital Padua 

diagnosed with Parkinson's Disease (PD).

The task was performed on a desktop web browser with a computer keyboard and involved 

participants familiarising themselves with a web-based piano keyboard, mapped to the 

second row of keys (keys ‘a’, ‘s’, ‘d’, and ‘f’) on the computer keyboard (fig 2). After a practice 

phase where participants were trained to play 2 four-note sequences (associated with fractals 

fig 3a and 3b), participants played 180 rounds of a task based on the two-armed bandit.

In each round, the participant was required to play either sequence 1 or sequence 2, with a 5-

point reward being hidden behind one of the sequences.

In order to receive the reward, the participants had to choose the correct sequence, and play 

it correctly. However, the probabilities of a sequence being rewarding was not always 50:50.

Fig 2: The web based piano keyboard

presented to participants

The probabilities were recalculated approximately every 36±6 rounds, with the probability 

of sequence 1 possessing the reward being as high as 90%, or as low as 10%.

The participant’s goal was to maximise their reward based on their perceptions of the 

current probabilities of a sequence being rewarding. There was a total of 180 rounds for a 

theoretical maximum reward of 900 points.

Fig 3a: sequence 

1 fractal

Fig 3b: sequence 

2 fractal

Hypotheses

• Applying the HGF framework to the participant’s Win data will output a 

set of per-round precision-weighted prediction errors, that serves as a 

metric measuring that participant’s learning rate. An example output is 

shown in fig 4, with black indicating learning rate (red indicates reward 

expectations, blue indicates probability contingencies, orange indicating 

which sequence was played, green indicating the outcome of the round) 

• If dopamine plays an important role in motor skill learning, then 

Parkinson’s Disease patients (diagnosed with deficiencies in 

dopaminergic neurons) should exhibit impaired learning in the online 

task. Therefore, their prediction errors would be significantly larger than 

those in the young and old groups.

• The learning rates for all participants would be summed and compared 

between the three groups using linear mixed models. It is expected that 

the learning rates for the young group will be significantly higher than 

those in the PD group, and less significantly higher than the old group.

• The original and extended versions of the HGF framework will be tested, 

and compared with other reinforcement learning models (e.g. Rescorla-

Wagner). Additional insights may be obtained by analysing timing data 

and accuracy of key-presses.

Future work 

• In order to perform a learning rate

analysis, a HGF will need to be applied

to the result data.

This will require tuning of the hyper-

parameters to deal with errors found with

the default weightings.

• Analysis of the prediction error estimators (AIC, BIC, LME6) to estimate 

the quality of the model

• Further Insights from timing data

• Comparisons by contingency block

• Analysing learning rates from other computational models

Research Goals

This study attempts to determine how reward prediction modulates the rate of 

motor-based learning. Computational models based on a Hierarchical Bayesian 

model, the Hierarchical Gaussian Filter (HGF)5, would be fitted to the results of 

a motor decision task, and compared to other reinforcement learning models to 

estimate how well reward-based prediction errors serves as a predictor for 

motor learning rates.

Preliminary Results

• PD patients achieved slightly lower 

scores than other groups (fig 5). The 

difference is not statistically significant.

• PD patients played sequences, on 

average slower than other groups, with 

younger participants playing 

sequences faster than older 

participants (fig 6)

• Young participants made fewer errors 

and experienced fewer timeouts than 

other groups (fig 7)

that motor skill learning is a decision-making process. Other studies4 have 

shown that the rate of learning is sensitive to extrinsic reward, highlighting a 

role for the brain’s reward neurotransmitter, dopamine, and the basal ganglia 

structures involved with its regulation (fig 1).
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