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Introduction

Critical phenomena emerge during phase transitions, where ¢ Fig.1: Our network consists of a total of 1000
systems shift states. Evidence suggests the brain operates near neurons, 800 being excitatory and 200 inhibitory.
a critical point [1], optimising information transmission and * Tosimulate the spiking of a neuron we use the
storage [2]. How the brain remains at this point is still a Izhikevich model.

question at large. Our research question investigates the *  Excitatory neurons are split into modules (blue) of

homeostatic mechanism for self-organised quasi-criticality. é)?i(s)t\l;lrl\tgr?innﬁ?tﬁfoesgsclgl ((J:e%')l' Inhibitory neurons
Focal connections (blue arrows) exist from

A promising candidate for this mechanism is synaptic plasticity, excitatory to inhibitory; with every four neurons

which has shown promising applications in self-organised, from an excitatory module connecting to the same
critical neural networks [3,4]. Spike Timing Dependent- neuron from the inhibitory pool
Plasticity (STDP) can organise a network towards metastable « Diffusion connections (red arrows) connect from
states [4]. Previous work has also shown that when at the the inhibitory pool to every other neuron in the
critical point, spiking neural networks exist in a balance of network.
competitive and cooperative environments [5]. * Thus, one module may inhibit all others.
* Random weak connections (dashed lines) are

We, therefore, hypothesise that networks are capable of self- established between modules.
organisation towards criticality through mechanisms of « Each connection/synapse is subject to increase or
cooperation and competition, facilitated through STDP. decrease according to STDP.

Methods Results

Fig 1: Schematic diagram of the network

*  We define Iplocal as the probability of an
intermodular synapse firing. We define pgoan1
as the mean of all pypcq;- We expect pgioan: t0
stabilise near intermediate values, as this aligns
with [4].

O P e - * We will conduct a one-way ANOVA to compare

~4 the probability of intermodular synapse firing
between our network with synaptic plasticity
anld a network without any synaptic learning
rules.

*  We will use @ID [5], a state-of-the-art
information-theoretic technique for dynamical
systems, to confirm that this process is caused
by upward causation.
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