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Introduction

Critical phenomena emerge during phase transitions, where 
systems shift states. Evidence suggests the brain operates near 
a critical point [1], optimising information transmission and 
storage [2]. How the brain remains at this point is still a 
question at large.  Our research question investigates the 
homeostatic mechanism for self-organised quasi-criticality.

A promising candidate for this mechanism is synaptic plasticity, 
which has shown promising applications in self-organised, 
critical neural networks [3,4]. Spike Timing Dependent-
Plasticity (STDP) can organise a network towards metastable 
states [4]. Previous work has also shown that when at the 
critical point, spiking neural networks exist in a balance of 
competitive and cooperative environments [5].  

We, therefore, hypothesise that networks are capable of self-
organisation towards criticality through mechanisms of 
cooperation and competition, facilitated through STDP. 

Methods

Fig 1: Schematic diagram of the network
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• Fig.1: Our network consists of a total of 1000 
neurons, 800 being excitatory and 200 inhibitory.

• To simulate the spiking of a neuron we use the  
Izhikevich model. 

•  Excitatory neurons are split into modules (blue) of 
100 with an edge density of 0.1. Inhibitory neurons 
exist in an inhibitory pool (red).

• Focal connections (blue arrows) exist from 
excitatory to inhibitory; with every four neurons 
from an excitatory module connecting to the same 
neuron from the inhibitory pool

• Diffusion connections (red arrows) connect from 
the inhibitory pool to every other neuron in the 
network.

• Thus, one module may inhibit all others.
• Random weak connections (dashed lines) are 

established between modules.
• Each connection/synapse is subject to increase or 

decrease according to STDP. 

Results

• We define 𝑝!"#$! as the probability of an 
intermodular synapse firing. We define 𝑝%!"$&! 
as the mean of all 𝑝!"#$!. We expect 𝑝%!"$&! to 
stabilise near intermediate values, as this aligns 
with [4].

• We will conduct a one-way ANOVA to compare 
the probability of intermodular synapse firing 
between our network with synaptic plasticity 
and a network without any synaptic learning 
rules.

• We will use ΦID [5], a state-of-the-art 
information-theoretic technique for dynamical 
systems, to confirm that this process is caused 
by upward causation.
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