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Escape behaviour is a crucial survival mechanism, yet its neural 

basis remains poorly understood. According to Evans et al. (2018), 

the drift diffusion model (DDM) provides a useful framework for 

explaining escape behaviour. Based on this model sensory evidence 

accumulates over time until a decision threshold is reached, at which 

point escape is initiated (Evans et al., 2018). The time taken to 

reach this threshold explains the variability in escape latency while 

the amount of evidence accumulated beyond the threshold accounts 

for differences in escape speed. Although this framework explains 

behavioural variability, how such processes are implemented in the 

brain is still unclear.

Wong & Wang (2006) introduced a biologically plausible neural 

implementation of DDMs using attractor dynamics, bridging the gap 

between abstract theories and applicable neural architecture. This 

model consists of computing neural populations that integrate inputs 

through mutual inhibition and self-excitation, forming stable activity 

patterns that guide a decision. 

It remains an open question whether the neural implementation of 

drift diffusion models, such as attractor-based networks, can capture 

the full range of experimentally observed escape behaviours.

     Research Questions 

Can an attractor-based neural model 

capture the variability and timing of 

escape decisions more accurately than a 

simple mean-response model, when fitted 

to behavioural data from mouse threat-

response experiments?

Hypotheses

1. The attractor-model will better predict escape probability as 

function of threat intensity compared to the mean model. 

(Graph a)

2. The model will generate reaction times that match more 

closely to the behavioural data than the mean model can. 

(Graph b)

3. The average firing rate after the decision threshold will 

correlate with escape speed (Graph c)

Methods

We simulate escape decisions in MATLAB using an attractor-based 

model (Wong & Wang 2006), fitted to behavioural data from Evans

et al. (2018). Key parameters of the model and their behavioural 

correlates 

• Input current – threat intensity

• Decision threshold – speed accuracy trade-off

• Neural noise – attention 

• Synaptic weights – behavioural dynamics

  
Modelling Phases:

1. Model Setup – create an attractor network with two competing 

units and inhibitory interactions.​

2. Parameter Tuning – adjust parameters systematically to align the 

model output with behavioural escape probabilities and timings. ​

3. Escape Speed Mapping – map the post-threshold firing rate to 

behavioural escape speed.​

4. Evaluation – Compare attractor model to mean model on 

behavioural outputs using:

• R² goodness-of-fit

• Ability to predict escape speed

               Expected Results

Our preliminarily results (Graph a, the blue line) show that the model can replicate higher escape probability as a function 

of higher threat intensity creating a sigmoid shaped probability curves matching empirical data. These result were obtained using a blind 

search method in the parameter space; we expect further improvement with the use of appropriate optimization algorithms.

We also expect a decrease in escape time with increasing threat intensity, as per biological findings (Graph b). In addition,  the model’s 

suprathreshold firing rate is expected to correlated with escape speed (Graph c).

Finally, we believe that the proposed model will provide a plusible neural mechanism decision making under threat and advance our 

understanding of survival-related decision circuits. It may also enable the formulation of hypotheses about the neural basis of anxiety, 

particularly in cases where individuals overreact to minimally threatening situations.
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Figure 1. Diagram of attractor network from Wong & Wang (2006), showing 

two competing neural populations with self-excitation and mutual inhibition 
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