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Background & Motivation Results (RQ1)

Motivation: Early detection of Alzheimer’s Disease (AD) is Both models show comparable overall regression accuracy (r = 0.74—0.80).

crucial for slowing progression and optimizing resource
allocation.

Prior Work: El-Sappagh et al. (2020) used a CNN-BIiLSTM
to classify AD progression and predict cognitive scores,
treating all input modalities equally and offering limited
interpretability.
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Research Questions: 1) Can dynamic, modality-specific 150

weighting improve prediction performance? 2) Can
interpretability techniques pinpoint which modalities and time
points drive those predictions?
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Hypotheses: H1) Introducing dynamic modality weights will o0 %

yield higher accuracy than an equal-weight approach. H2)
Interpretability methods will highlight clinically meaningful n
features.
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Objectives: Incorporate dynamic modality weights in the
CNN-BIiLSTM model and compare performance, apply
heatmaps and permutation importance to identify key
modalities and time points.

Results (RQ2)
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