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Background & Motivation

Motivation: Early detection of Alzheimer’s Disease (AD) is 
crucial for slowing progression and optimizing resource 
allocation.

Prior Work: El-Sappagh et al. (2020) used a CNN–BiLSTM
to classify AD progression and predict cognitive scores, 
treating all input modalities equally and offering limited 
interpretability.

Research Questions: 1) Can dynamic, modality-specific 
weighting improve prediction performance? 2) Can 
interpretability techniques pinpoint which modalities and time 
points drive those predictions?

Hypotheses: H1) Introducing dynamic modality weights will 
yield higher accuracy than an equal-weight approach. H2)
Interpretability methods will highlight clinically meaningful 
features.

Objectives: Incorporate dynamic modality weights in the
CNN-BiLSTM model and compare performance, apply
heatmaps and permutation importance to identify key 
modalities and time points.

Background & Motivation

Motivation: Early detection of Alzheimer’s Disease (AD) is 
crucial for slowing progression and optimizing resource 
allocation.

Prior Work: El-Sappagh et al. (2020) used a CNN–BiLSTM
to classify AD progression and predict cognitive scores, 
treating all input modalities equally and offering limited 
interpretability.

Research Questions: 1) Can dynamic, modality-specific 
weighting improve prediction performance? 2) Can 
interpretability techniques pinpoint which modalities and time 
points drive those predictions?

Hypotheses: H1) Introducing dynamic modality weights will 
yield higher accuracy than an equal-weight approach. H2)
Interpretability methods will highlight clinically meaningful 
features.

Objectives: Incorporate dynamic modality weights in the
CNN-BiLSTM model and compare performance, apply
heatmaps and permutation importance to identify key 
modalities and time points.

Participants & 
Demographics 

3,345 ADNI 
participants (1,421 
CN, 1,394 MCI, and 
530 AD). The cohort 
was 51% female 
(1,698) and 49% male 
(1,644), mean age 
72.2 ± 7.7 years 
(range 50–91), with 
cognitive, clinical, 
neuropathology, PET, 
and MRI data.
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Models

Original Model: Each modality 
uses Conv1D to 3xBiLSTM (plus 
a small static net); their final 
outputs are fused into dense 
layers, then one Softmax
classifier (CN, MCI, AD) and four 
linear regressors (ADAS, MMSE, 
FAQ, CDRSB).

Uncertainty-Weighted Model: 
Added five trainable log‐variance 
terms so the model learns each 
task’s loss weight automatically.

Interpretability: Used 
gradient‐based time‐step 
saliency, t-SNE/UMAP 
embeddings, and permutation 
importance.

Models

Original Model: Each modality 
uses Conv1D to 3xBiLSTM (plus 
a small static net); their final 
outputs are fused into dense 
layers, then one Softmax
classifier (CN, MCI, AD) and four 
linear regressors (ADAS, MMSE, 
FAQ, CDRSB).

Uncertainty-Weighted Model: 
Added five trainable log‐variance 
terms so the model learns each 
task’s loss weight automatically.

Interpretability: Used 
gradient‐based time‐step 
saliency, t-SNE/UMAP 
embeddings, and permutation 
importance.

Training

Original model: Trained 
on 70% of data, checked 
on 10%, and tested on 
20%, stopping when 
performance plateaued.

Uncertainty‐Weighted 
Model: Same split and 
training, but the model 
learned how much to 
trust each task 
automatically, with 
automatic stopping and 
checkpoints.
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Results (RQ1)

Both models show comparable overall regression accuracy (r ≈ 0.74–0.80). 
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Results (RQ2)

The time‐step saliency 
maps directly informed 
which single 
“snapshot” to take for 
each modality. 
Snapshot performance 
was essentially 
useless: diagnosis 
accuracy was 45% 
(CN recall 0.93, AD 
recall 0.00), and all 
regressions had 
negative R², indicating 
no real predictive 
power.
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Conclusions

The 
uncertainty‐weighted 
model matched the 
original network’s 
overall accuracy while 
substantially boosting 
AD recall and 
preserving strong 
regression correlations. 
A single‐snapshot 
approach proved 
ineffective, 
underscoring the 
importance of temporal 
integration. Future 
work should explore 
alternative 
modality‐weighting 
schemes.
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